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ABSTRACT: 

 

Spatial data integration is of great importance for many applications and particularly for emergency response. Besides the variety of 
challenges in 2D, increasing attention is given to integration of CAD and 3D GIS models. Many indoor models (needed for 
localisation and evacuation of people) or geological formations (needed for earthquakes or landslides) exist in CAD systems, but are 
often difficult (or impossible) to integrate with GIS models. Nowadays, a process of converging functionality is observed, but still 
many challenges remain. Amongst all these are the supported primitives. CAD software supports a broad range of primitives such as 
cone, sphere, cylinder and free-form curves and surfaces (NURBS, B-Splines, Bezier), which are not present in the GIS world. Open 
Geospatial Consortium has recognized the importance of freeform curves and surfaces and has included them in the Abstract 
Specifications, but no GIS software supports them. This paper presents our design of six new freeform data types to be considered for 
SQL Implementation Specifications.  

 

1 INTRODUCTION 

GIS and CAD systems used to differ significantly and this is 
logical: the two types of software were designed for different 
purposes. Initially, the intention of CAD systems was to provide 
3D tools for design of relatively small models (constructions, 
industrial parts, cars, etc.) in local coordinates systems. Since 
this was design software, a lot of emphasis was given to editing 
tools and effective 3D visualization. In contrast, GIS was 
designed to represent the real world, and more specifically all 
the tasks that used to be performed on paper maps. GIS, 
therefore, was developed to maintain points, lines and polygons 
with geographic coordinates and corresponding attributes, and 
provide specific spatial analysis (very much application-
oriented). Many authors have discussed the similarities and 
differences between CAD and GIS and suggested different way 
to integrate them (Shepherd 1990, Schutzberg 1995, Plümer 
2004, Oosterom et al, 2006). Technology- or application- 
driven, many developments have been contributing to seamless 
exchange of data between CAD and GIS, which is not yet 
completely successful. Despite promising research results 
(Arens et al 2005, Penninga 2005), the general problem, i.e. 
lack of 3D primitives in GIS environments, remains. This paper 
presents an approach of linking the two domains, by providing 
3D complex data types at database level.   

The developments in this paper follow the formal approach of 
specifying geometry used in GIS domain, i.e. the Open 
Geospatial Consortium (OGC). Formalization initiatives exist 
also in the CAD domain (e.g. ISO 10303). However, this 

standard concentrates more on product-related data, coverin 
life-cycle aspects in design and manufacturing.  

The formal geometry semantics for real-world objects (or 
spatial features in OGC terms) is metrically and topologically 
described in the OGC Abstract Specifications, (OGC, 2001), 
which are identical with ISO 19107. The geometry of spatial 
features is described by the basic class GM_Object, which is a 
combination of a geometry and a coordinate reference system. 
The Abstract Specifications do have an extended support of 
primitives as they are used in CAD, including freeform shapes, 
i.e. Bézier, B-spline, Cubic-spline, Polynomial spline and 
NURBS1. In this paper we present research that goes one step 
further. We design a data type for the SQL Implementation 
Specifications (i.e. for an implementation in DBMS). 

The rest of the paper is organised as follows. Section 2 gives a 
brief definition of freeform shapes. Section 3 presents the 
conceptual design of the data types. Section 4 presents some 
implementations results. The last section concludes on the 
obtained results and recommends further developments. 

2 BÉZIER, B-SPLINE AND NURBS CURVES AND 
SURFACES 

There are several methods to represent freeform curves and 
surfaces. Bézier, B-spline and NURBS methods are among the 
                                                           
1 This work has discovered an error in the description of NURBS in the 
Abstract Specifications. The editor J. Herring has been notified and 
corresponding corrections are to be introduced.  
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most commonly used in practice, and are therefore considered 
here too. Bézier, B-spline and NURBS curves and surfaces are 
all represented by parametric functions (Piegl and Tiller 1997). 
Parametric functions have several advantages over implicit 
functions, i.e. functions of the form f(x,y,z)=0. Some of the 
most important advantages are: 

• 

• 

They have more degrees of freedom to model shapes 
than implicit functions have. 

Points on a curve or surface can be evaluated 
reasonably fast by numerically stable and accurate 
algorithms. 

The simplest of the three methods to represent a freeform curve 
discussed here is the Bézier curve. Its shape is basically defined 
by a sequence of n+1 control points Pi (i=0..n) in 3D space. A 
Bézier surface is, similarly, defined by a grid of (n+1)*(m+1) 
control points Pi,j (i=0..n, j=0..m). One of the major problems 
with Bézier curves and surfaces is that one usually wants to 
keep the degree(s) low, i.e. preferably not higher than 3 or 4, 
and therefore one has to model complex shapes by a 
composition of several curves or surfaces. This, in turn, requires 
specific configurations of control points to guarantee a certain 
order of continuity. 

B-spline curves and surfaces, which are generalizations of 
Bézier curves and surfaces, do not have this problem, because 
here the degree can be defined independently from the number 
of control points, and continuity of the curve or surface is 
realized automatically. A B-spline curve of degree p, or order 
k=p+1, is defined by a sequence of n+1 control points Pi 
(i=0..n) in 3D space, and a knot vector of n+k+1 knots. It is a 
piecewise polynomial curve. 

A B-spline surface of degrees p and q, or orders k=p+1 and 
l=q+1, in u respectively v is, similarly, defined by a grid of 
(n+1)*(m+1) control points Pi,j (i=0..n, j=0..m), and two knot 
vectors U and V. The choice of the knot vectors has quite some 
influence on the resulting shapes, including the degree of 
continuity at the knots. In particular, one can take uniform or 
non-uniform knot vectors; in a uniform knot vector, all knots 
are chosen at equal intervals. See Piegl and Tiller 1997 for more 
details. 

 

Figure 1: NURBS curves (above) and surface (bellow) 

Though Bézier and B-splines are widely used representations, 
the most popular method for representing freeform shapes is 
nowadays the NURBS method (Figure 1). NURBS are a 
generalization of B-splines. The main difference between 

NURBS and B-splines is that the control points of a NURBS 
curve or surface each have a weight, which determines how 
much the control point contributes to the curve or surface. This 
gives extra degrees of freedom for modelling curves and 
surfaces. The most important properties of NURBS curves are: 

A NURBS curve is a piecewise rational polynomial 
curve, and has the same continuity conditions at knots 
as a B-spline curve.  

• 

• 

• 

• 

• 

NURBS curves are projective invariant, i.e. one can 
apply affine and projective transformations by 
applying these to the control points. 

NURBS curves can exactly represent conic sections, 
such as circles and ellipses. 

NURBS curves are, just like B-splines curves, locally 
modifiable and contained within the convex hull of 
their control points. 

Similar properties are valid for NURBS surfaces. In particular, 
these can exactly represent quadratic surfaces, such as a 
spherical surface. 

Altogether, the NURBS method is one of the most powerful 
methods for representing freeform curves and surfaces. NURBS 
have been included in many geometric standards, and are 
supported by many mainstream CAD systems. 

3 CONCEPTUAL DESIGN 

The most important information from the previous section for 
modelling a new freeform data type is on the parameters that 
have to be maintained for the data type. It is clear that NURBS 
curves require the largest number of parameters, i.e. control 
points, knot vector, degree and weights. Bézier curves require 
only control points and degree. B-spline curves need a knot 
vector in addition to the parameters of a Bézier shape.  

In fact, all the parameters discussed in the previous section for 
Bézier and B-spline curves and surfaces can be defined as 
attributes in the classes. Bézier and B-spline are to be defined as 
instances of GM_BsplineCurve (an abstract class for curves and 
surfaces). A Bézier curve can be described as a B-spline curve 
in which the knot vector contains a special sequence of values. 
There are two other optional attributes, i.e. curveForm and 
isPolynomial mentioned in the OGC Abstract Specifications, 
which are used to indicate the type of curve to be approximated 
and whether a curve is polynomial.  

3.1 Bézier, B-spline and NURBS data types 

The conceptual model has been created with respect to the 
mathematical definitions, considering the OGC Abstract 
Specifications and OGC Implementation specifications for SQL 
(Figure 2). Optionally, the definition of the new NURBS data 
type can strictly follow the existing OGC formalism by creating 
a new class for NURBS. NURBS can be considered a 
generalization of B-spline and Bézier and, consequently, the 
NURBS class can be defined as a super class of 
GM_SplineCurve. However, from implementation point of 
view (and considering Simple Feature Specifications for SQL), 
this approach is not that practical due to the following 
considerations: 

Being the most complex type, NURBS require more 
parameters to be defined as attributes, which leads to 
a complicated hierarchy between the three curves. It 
will mean maintaining empty values for some 
parameters.  



Most of the algorithms (important for developing 
functions and operations) are different for Bézier, B-
spline and NURBS curves and surfaces. A typical 
example is computing the offset of NURBS curves 
and surfaces. 

• 

 

Figure 2: UML schema of four implemented data types 
(GM_BsplineSurface and GM_ BézierSurface are not shown) 

Therefore six new classes have been created as sub-classes of 
GM_SplineCurve: three for the curves and three for the 
surfaces. GM_SplineCurve is the super-class for 
GM_BézierCurve, GM_BSplineCurve and GM_NURBSCurve. 
Control points, knots and degree are attributes of 
GM_SplineCurve, and they are inherited by the other three 
curves. GM_KnotVector is the class for knot vector, which is 
used in GM_SplineCurve, GM_NURBSCurve and 
GM_NURBSSurface. GM_PointArray and GM_WeightArray 
are simple array types, which enumerate real values and are 
used to represent correspondingly control points and weight 
values in NURBS. GM_Trim represents the trim values for 
GM_NURBSCurve and GM_NURBSSurface; trim values are 
used to represent a part of a curve or surface. 

3.2 Functions on freeform data types 

Besides the data types, a set of operations on freeform shapes 
has to be also available, but a formalism for this has still not 
been developed within the GIS domain. OGC Abstract 
Specifications discuss only derived topological operations and 
suggest using three different formalisms for it (Boolean, 
Egenhofer and Clementini operators). OGC Implementation 
Specifications refer to an enlarged set of operators and 
functions, including metric operators (distance, area, etc.), 
proximity operators (within distance) and even creation of 
aggregates, but they are specified only for simple features. 
Assuming that freeform curves and surfaces should be dealt 
with as any other geometry data type (although more complex), 
operators similar to those for simple features have to be 
provided. This is to say that operations for validation, detecting 
topological relationships, metric computations (length, distance, 
area, etc.), proximity (distance between two features, objects 
within distance, etc.), operations creating new geometries 

(intersection, difference, union, buffer, etc.) might be 
considered.  

Other operations that are important for freeform curves and 
surfaces are rotation, translation and scaling. Such functions are 
needed for integrating newly designed constructions (usually in 
local coordinate systems) with real world models (using 
geographical coordinate systems). Conversion functions 
between Bézier, B-spline and NURBS curves will be 
appropriate as well, because different CAD applications support 
different freeform data types. 

The question which functions should be available at DBMS 
level is very relevant (Zlatanova and Stoter 2006). On the one 
hand, DBMS are not designed for heavy computations. On the 
other hand, various complex algorithms are already available in 
the CAD domain. In fact, the same strategy should be followed 
for freeform shapes as for simple features: generic functions 
have to be available in DBMS, and complex computations at 
application level. For example, an important operation is curve 
evaluation, but the algorithms are complex and they are 
available in nearly all CAD systems (AutoCAD, MicroStation).  

The functions developed within this research are relatively 
simple and aiming at demonstrating the use of the developed 
data types. They include functions for: validation, simple 
transformations, conversion between different freeform shapes, 
computing distance between two freeform curves, and retrieving 
parameters of NURBS such as knots, control points and their 
number.  

The validation function for NURBS is derived from the 
mathematical description of the curves and surfaces and checks 
whether all needed parameters are present, i.e. coordinates for 
control points, degree value, weight values and knot vector. 
Moreover the following conditions should also be satisfied: 
degree > 1, number of control points >3, degree = number of 
knots - number of control points – 1, number of weight values is 
equal to the number of control points, each weight value > 0, 
knot vector is non-decreasing and has more than 1 knot, and 
upper trimming value > lower trimming values.  

4 IMPLEMENTATION IN ORACLE SPATIAL  

We have selected to implement the new geometries as 
individual data types as recommended by OCC specifications, 
and therefore outside the SDO_GEOMETRY model. There are 
two major advantages of mapping the conceptual model into 
separate freeform data types: 1) the data types are very clear and 
explicitly defined, and 2) little redundant information is stored 
since every data type has its own attributes. Adapted data types 
can be easily inherited from existing prototypes, and functions 
on prototype types will be also operational for inherited types. 
This object-oriented mechanism is quite important for 
developing new applications. But there are also a few 
disadvantages. For example, different kinds of geometries have 
to be stored in separate table columns. This may lead to a 
practical inconvenience. A model normally consists of different 
geometry types, and it is desirable to have all the information 
stored in the same table column (as is the case with 
SDO_GEOMETRY). Furthermore, certain programming codes 
are required to create new data types. For example, Java or C or 
PL/SQL code is required in Oracle Spatial for user-defined data 
types.  

4.1 Implementation 

New data types can be designed in Oracle using natively 
supported data types, such as object types, REFs, VARRAYs, 
and Nested tables. Here we are only interested in object types 



Table created. and VARRAYs. The user-defined data types in Oracle can be 
declared using the SQL statement CREATE TYPE. The 
implementation of the declaration can be PL/SQL, Java or C++. 
In our implementation, Java has been selected due to the good 
support of Oracle Spatial. The overall procedure for creating 
data types using Java can be subdivided into three main steps: 
1) Java class creation, 2) loading of the classes in Oracle spatial, 
and 3) declaring the data type in Oracle using the SQL 
statement CREATE TYPE.  The mapping between Java classes 
and Oracle Spatial data types is quite straightforward: Java 
classes map to Oracle spatial data types as Java attributes map 
to data type attributes. Further details on the Java 
implementation can be found in Pu (2005). 

 
A B-spline curve with ID=3, degree equal to 4, 5 control points 
and uniform knot vector is inserted in the table TEST1; 

SQL> insert into test 
values(3,GM_BSplineCurve(4,GM_PointArray(1,2,10,
1,2,3,9,2,3,5,7,6,4,4,4,9,0,4) 
,GM_KnotVector(Vector(0,0,0,0,0,0.5,1,1,1,1,1),N
ULL),NULL)); 
1 row created. 
 
SQL> select * from test1; 
ID 
---------- 
GEOM(DEGREE, CONTROLPOINTS, KNOTS(KNOTS, 
WEIGHTS), ISPOLYNOMIAL) 

The functions on freeform data types have been implemented 
either as SQL methods (unary operations) or as SQL functions 
(binary operations). The implemented unary operations are: 
Num, NumV, NumU (number control points of curve and 
surface in u and v directions), Degree, DegreeV, DegreeU 
(degree of curve and surface in u and v directions), Cpoints (list 
of control points), IsClosed, Centroid (mass point of control 
points), ConvexHull (convex hull of control points) and 
BoundingBox (MinMax Bounding Box of control points). The 
transformation functions are Rotate, Translate and Scale as the 
computations are with respect to the control points. The 
implemented binary functions are: DistanceS2S (distance 
between surfaces), DistanceC2C (distance between two curves) 
and AnyIntersect. The distance functions are implemented as 
the distance between the centroids of the geometries. The 
function AnyIntersect checks whether two freeform geometries 
may intersect with each other. This operation is implemented by 
checking whether their convex hulls of the control points 
intersect (Figure 3). If convex hulls do not intersect, then the 
two freeform geometries do not intersect either; otherwise they 
might or might not intersect. 

------------------------------------------------
---------------------- 
3 
GM_BSPLINECURVE(4, 
GM_POINTARRAY(1,2,10,1,2,3,9,2,3,5,7,6,4,4,4,9,0
,4), 
GM_KNOTVECTOR(VECTOR(0,0,0,0,0,0.5,1,1,1,1,1), 
NULL), NULL) 
 
Let us now create a second table TEST2 with 2 columns. The 
column GEOM is of the freeform surface type: 
GM_NURBSSurface. 

 
SQL> create table test2 (id number, geom 
GM_NURBSSurface); 
Table created. 

 
A NURBS surface is inserted into the table TEST2. The 
parameters of this NURBS surface are: 3 control points in u 
direction, 5 control points in v direction; degree 2 in u direction; 
degree 2 in v direction; knot vector in both u and v directions; 
15 weight values; no trimming value. 

 

 
SQL> insert into test2 values(1, 
GM_NURBSSURFACE(3, 5, 2, 2, 
GM_POINTARRAY(5.1469375, 1.83903125, 1. 744375, 
5.14721875,2.24558333, 1.722375, 5.1475, 2.421, 
1.98245833, 5.40390625,1.83903125,1.744375 , 
5.371125, 2.2166875, 1.759125, 5.33834375, 
2.421, 1.9854375, 5.660875,1.83903125, 1.744375, 
5.5950 3125, 2.18780208, 1.795875, 5.5291875, 
2.421, 1.98841667, 5.910875,1.83903125, 
1.744375, 5.81545833 , 2.15890625, 1.832625, 

Figure 3: Example of AnyIntersect: the convex hull of the 
curves is used 

5.72003125, 2.421, 1.99139583, 5.910875, 
1.83903125, 1.994375,5.910875, 2.1 3002083, 
1.994375, 5.910875, 2.421, 1.994375), 

4.2 SQL examples with created freeform data types 

Following we give several examples to show how freeform data 
types in Oracle can be manipulated using SQL commands. The 
following SQL statements show the components of the 
GM_NURBSCurve data type  

GM_WEIGHTARRAY(1, 1, 1, 1, 1, 1, 1, 1, 1, 
.707106781, .853553391,1, 1, 1, 1), 
GM_KNOTVECTOR(VECTOR(0, 0, 0, 1, 1, 1), NULL), 
GM_KNOTVECTOR(VECTOR(0, 0, 0, .5, .5, 1, 1, 1), 
NULL),NULL,NULL)); SQL> desc GM_NURBSCurve 
1 row created. GM_NURBSCurve extends GM_SPLINECURVE 
  

Name      Type The implemented unary operation NumU supplies the number 
of control points in the u direction: ----------------------------------------- ------ 

DEGREE      NUMBER 
CONTROLPOINTS    GM_POINTARRAY SQL> select a.geom.NumU from test2 a; 
KNOTS     GM_KNOTVECTOR geom.NUMU 
WEIGHTS    GM_WEIGHTARRAY ---------- 
TRIM      GM_TRIM 3 
  
A table TEST1 is created with two columns ID and GEOM. The 
column GEOM is intended for GM_BsplineCurve.  The implemented unary operation DegreeV applied to the same 

table gives the ID of the NURBSsurface(s) with degree 2 in the 
v directions: SQL> create table test1 (id number,geom 

GM_BSplineCurve); 



SQL> select a.id from test2 a where 
a.geom.degreeV=2; 
ID 
---------- 
1 
 
The following SQL statement checks whether the B-spline 
curve from the table TEST1 is valid: 

 
SQL> select a.geom.validation() from test1 a; 
A.GEOM.VALIDATION() 
------------------ 
1 
 
Value 1 means that the curve is valid (with respect to the rules 
defined in Section 3.2). 

Let us now demonstrate the validation function for three 
NURBS curves. 

SQL> create table test3 (id number, geom 
GM_NURBSCurves); 
Table created. 
 
SQL> insert into test 
values(1,GM_NURBSCurve(6,Null,Null,Null,NULL)); 
 
1 row created. 
 
SQL> insert into test 
values(2,GM_NURBSCurve(4,GM_PointArray(1,2,3,1,2
,3,9,2,3,5,7,6,4,4,4,9,0,4), 
GM_KnotVector(Vector(0,1),NULL),GM_WeightArray(1
,1,1,1),NULL)); 
 
1 row created. 
 
SQL> insert into test 
values(3,GM_NURBSCurve(3,GM_PointArray(1,2,10,1,
2,3,9,2,3,5,7,6,4,4,4,9,0,4),G 
M_KnotVector(Vector(0,0,0,0,0,0.5,1,1,1,1,1),NUL
L),GM_WeightArray(1,1,1,1,1,1) 
,NULL)); 
 
SQL> select id, a.geom.validation() from test a; 
 
ID A.GEOM.VALIDATION() 
---------- ------------------ 
1  0 
2  0 
3  0 
 
The first NURBS curve is invalid (return value 0) because an 
insufficient number of parameters is stored; the second is 
invalid because the number of weights is not equal to the 
number of control points ((length of GM PointArray)/3); the 
curve with number 3 is invalid because the third geometry rule 
(relation between degree, number of control points and number 
of knots) is violated. 

4.3 Visualisation in CAD software  

The freeform data types in Oracle Spatial can also be accessed 
by CAD software. The way to do this (when no native support 
is available yet) is to use an application that ‘translates’ the 
internal CAD representation into the developed data types (and 
vice versa) via a database connectivity bridge. We have 
experimented with Microstation and AutoCAD. In the case of 
Microstation, the tools used were Java Microstation Developing 
Language (JMDL) (Bentley, 2005) and Java Database 
Connectivity (JDBC) Bridge (Oracle, 2003a); for AutoCAD 
these were ObjectARX (C++ based language), (AutoCAD, 
2005) and Open Database Connectivity (ODBC) bridge (Oracle 

2003b). Taking Microstation as example, a freeform model can 
be imported from Microstation to Oracle Spatial as follows:  

1. A JMDL program checks all the shapes in the 
Microstation model, and constructs an instance of the 
corresponding freeform class (if a freeform geometry 
is found).  

2. Instances of freeform classes in JMDL are 
reorganized according to the format of freeform types 
in Oracle, and inserted into Oracle using JDBC 
Bridge.  

Importing data types from Oracle Spatial to Microstation is just 
the other way around. The procedure is similar for AutoCAD 
and Oracle Spatial. Further details on implementation can again 
be found in Pu (2005). 

 
Figure 4:  The Dutch Flower festival, Haarlemmermeer 2002 

The data types have been tested with the building of the 
Netherlands pavilion, built for the Flower Festival 2002 in 
Harlemmermeer (Figure 4). The building was originally 
designed in Maya, using 6 large NURBS surfaces, several other 
smaller ones, and a number of planes. The model was imported 
in Microstation using the IGES file format. The data type used 
for storage of the geometries is GM_NURBSSurface. The 
planes are represented by the SDO_GEOMETRY type polygon. 

  
Figure 5:  The 3D model retrieved in Microstaion from Oracle 

Spatial.   

As mentioned before, the new data types cannot be stored in the 
same column containing the SDO_GEOMETRY types. 
Therefore the model was stored in two different tables: 
SIMPLE_GEOM and NURBS_GEOM. The polygons and 
complexes of them are stored in the table SIMPLE_GEOM and 
the surfaces in another table NURBS_GEOM. The geometries 
of both tables were successfully retrieved and visualised in 
Microstation and AutoCAD (Figure 5). 



5 CONCLUSIONS AND RECOMMENDATIONS 

We have shown that NURBS is a very general representation of 
freeform shapes, and we recommend it to be considered for 
including in the Implementation specifications of OGC. 
NURBS, Bézier and B-splines are already recognized in the 
CAD domain as flexible geometries for modelling new designs. 
These geometries can also play an important role in GIS for 
maintaining complex surfaces obtained from reconstruction of 
real-world objects.  

Tests have convincingly demonstrated that appropriate data 
types for efficient management of freeform curves and surfaces 
can be created at DBMS level. The new data types have been 
prototyped for Oracle Spatial, but outside the Oracle Spatial 
SDO_GEOMETRY model, which means that they can be 
readily used for any spatial DBMS (PostGIS, MySQL,  
Informix, etc.). The design is compliant with OGC Abstract 
Specifications.  

This research is only the first step toward managing freeform 
data types in a spatial DBMS and GIS. Many issues have to be 
further investigated. For example, the validation rules for 
freeform curves and surfaces have to be further specified. The 
current implementation of validation functions is derived 
straightforward from the mathematical definitions.  

Further research is needed to determine relevant functions for 
support at DBMS level. The implemented set of prototype 
functions is relatively basic and not sufficient. For example, the 
implemented function AnyIntersect uses the convex hulls of the 
control points of two shapes to investigate the intersection. 
More accurate conclusions on the intersection of the shapes 
would require exhaustive computations. A separate data type for 
error messages would be of great help since the freeform shapes 
are much more complex than the simple features. It can be 
included as an error number attribute and an error message 
attribute within the data type. 

Although NURBS can represent conic sections (circle, ellipse, 
hyperbola, parabola), still separate data types have to be 
designed to represent these simple shapes in their simplest form. 
The parameters needed to store, for example, a circle as a 
NURBS shape are considerable. However, the properties of 
NURBS still can be used to perform operations only on NURBS 
data types. 

This research did not consider indexing of freeform shapes. As 
it is well know, a spatial index can make spatial queries much 
more efficient. The current spatial indexing mechanism of 
DBMS works on existing simple geometries and cannot be used 
for prototype data types. Further investigations are needed to 
develop an indexing mechanism for freeform geometries.   

The data types do not yet resolve modelling of freeform shapes 
in GIS applications. Presently the only possibility is 
approximation of freeform shapes with simple features (sets of 
lines and polygons) only for visualization with 3D GIS models. 
Alternatively, GIS models stored in DBMS can be integrated 
with CAD freeform models and further explored (and modelled) 
in CAD applications. In this manner, a first real integration of 
typical CAD shapes with GIS shapes can be realized.  

 

ACKNOWLEDGEMENTS 

We are thankful to the developers of Bentley Inc for their 
support and constructive discussions. This research was 
performed at the Geo-Database Management Centre at GISt, 
OTB, Delft University of Technology, The Netherlands.  

REFERENCES 

ARENS, C., J.E. STOTER, AND P.J.M. VAN OOSTEROM, 2005, 
Modelling 3D spatial objects in a geo-DBMS using a 3D 
primitive. Computers & Geosciences, 2, pp. 165-177 

AUTODESK, 2005, ObjectARX Developer’s Reference. 
Available online at www.autodesk.com (accessed 02.01.2006) 

BENTLEY, 2005, JMDL Developer’s Guide, Available online at 
www.bentley.com/support (accessed 02.01.2006) 

BREUNING, M. AND S. ZLATANOVA, 2006, 3D Geo-DBMS. In 
Large-scale 3D Data Integration: Challenges and 
Opportunities, Zlatanova and Prosperi (Eds.), pp. 88-113 (Boca 
Raton: Taylor&Francis, 2006) 

OGC, 2001,OpenGIS Consortium, The OpenGIS Abstract 
Specification, Topic 1: Feature Geometry (ISO 19107 Spatial 
Schema), OpenGIS Project Document Number 01-101, 
Wayland, Mass., USA. 

OOSTEROM, VAN P., J. STOTER, W. QUAK AND S. ZLATANOVA, 
2002, The balance between geometry and topology. In 10th 
International Symposium on Spatial Data Handling, 
D.Richardson and P.van Oosterom (Eds.), pp. 209-224 (Berlin: 
Springer-Verlag, 2002)  

OOSTEROM, VAN P., J. STOTER, AND E. JANSEN, 2006. Bridging 
the worlds of CAD and GIS. In Large-scale 3D Data 
Integration: Challenges and Opportunities, Zlatanova and 
Prosperi (Eds.), pp. 9-36, (Boca Raton: Taylor&Francis, 2006) 

ORACLE, 2003a, Oracle JDBC developer’s guide 10g release 1. 
Available on-line at 
http://www.oracle.com/technology/documentation, (accessed 
02.01.2006) 

ORACLE, 2003b, Oracle ODBC developer’s guide 10g release 1. 
Available on-line at 
http://www.oracle.com/technology/documentation, (accessed 
02.01.2006) 

PENNINGA, F., 2005, 3D Topographic Data Modelling: Why 
Rigidity Is Preferable to Pragmatism, in ‘Spatial Information 
Theory’, Cosit’05’, Vol. 3693 of Lecture Notes on Computer 
Science, Springer, pp. 409–425 

PIEGL, L. AND TILLER W., 1997, The NURBS Book 2nd Edition, 
Springer-Verlag 

PLÜMER, L., 2004, Bridging the gap between GIS and CAAD 
— geometry, referencing, representations, standards and 
semantic modelling, GIM International, 12–15, July 2004. 

SCHUTZBERG, A., 1995 Bringing GIS to CAD — A Developer’s 
Challenge, GIS World, 8 (5), pp. 48–54 

SHEPHERD, I.D.H., 1990, Mapping with desktop CAD: a critical 
review, Computer-Aided Design, Vol. 22(3), pp. 136-150 

PU, S. 2005, Managing Freeform Curves and Surfaces in a 
Spatial DBMS, MSc Thesis, TU Delft, 2005, 77 p. Available at 
http://www.gdmc.nl/publications (accessed 02.06.2006) 

ZLATANOVA, S. AND J. STOTER, 2006, The role of DBMS in the 
new generation GIS architecture. In Frontiers of Geographic 
Information Technology, S.Rana and J. Sharma (Eds.), pp. 155-
180 (Berlin: Springer-Verlag, 2006)  

 

 

http://www.autodesk.com/
http://www.bentley.com/support
http://www.gdmc.nl/publications

